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Abstract: In the following a method for an active adjustment of the journal bearing’s clearance is presented. It is revealed
that the stability range of the equilibrium position of a rotor system can be extended by an appropriate excitation and therefore
self-excited vibrations are suppressed, allowing a higher operational rpm of the whole system.
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1 Introduction

Hydrodynamic interactions within journal bearings can lead to unwanted oscillations due to instabilities caused
by non-linear effects. Depending on the bearing parametersand the angular velocity of the rotor, stable and unsta-
ble parameter ranges can be identified. In order to extend therange of stability various methods have been proposed
in literature. E.g. in the work of Chasalevris et al. (2012) avariable bearing shell geometry is investigated with a
passive geometry adjustment through an appropriate spring-damper mechanism.
The present work deals with an actively controlled modification of the bearing clearance in order to stabilize a
vertically arranged rotor system operating at high rpm.

2 Rotor model

Assuming a perfectly balanced rotor of mass2m on a rigid shaft rotating with an angular velocityω, which is
supported by two adjustable two-lobe journal bearings. Theinfluence of gravity should be neglected such that the
equations of motion expressed in the dimensionless timeτ according to (3) read out to be:

ex : ω2X ′′ = Sω fx(X,Y,X ′, Y ′) ey : ω2Y ′′ = Sω fy(X,Y,X ′, Y ′) (1)

Figure 1: Schematic geometry of the two-lobe bearing

X = (e/C) cos θ andY = (e/C) sin θ denote the
dimensionless position of the COM of the rotor rela-
tive to the bearing’s center. The dimensionless forces
fx and fy represent the bearings’ support reactions
resulting from integration of the pressure distribution
(cf. (6)). The parameterS = µB3RW /8mC3 corre-
sponds to a reduced form of the Sommerfeld-number
with µ describing the dynamic viscosity of the fluid,
B the bearing’s width,RW the shaft radius,R the
lobe radius andC = R−RW the mean bearing clear-
ance (cf. Figure 1).

3 Pressure Distribution

The governing equation for the pressure distribution within the bearing is given by the dimensionless REYNOLDS

equation
∂

∂ϕ

(
∂Π

∂ϕ
H3

)
+ γ2

∂

∂z

(
∂Π

∂z
H3

)
= 6

∂H

∂ϕ
+ 12

∂H

∂τ
(2)

with the height-functionH = 1 −D sinϕ − E cos(ϕ − θ) and the eccentricitiesD = D1 = d1/C for the upper
lobe andD = D2 = −d2/C for the lower lobe respectively (cf. Figure 1).
The corresponding partial differential equation is given in a dimensionless form according to
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with p representing the fluid pressure andz the axial coordinate of the bearing.
In order to simplify the PDE the short bearing theory is used,assumingγ >> 1, the partial derivative∂Π/∂ϕ can
be neglected. Integrating the simplified differential equation and averaging the resulting pressure function over the
axial coordinatez leads to the averaged circumferential pressure distribution

Π =

{
Πi=1 , ϕ ∈ [0, π)

Πi=2 , ϕ ∈ [π, 2π)
with Πi =

−8E′ cos(ϕ− θ) + 4E(κ− 2θ′) sin(ϕ− θ)− 4Di cosϕ− 8D′

i sinϕ

γ2(Di sinϕ+ E cos(ϕ− θ)− 1)3
.

(4)
In the following the eccentricity factorsD1 andD2 are assumed to oscillate harmonically around a given mean

valueD̂ according to
D1 = −D2 = D̂ (1 + δD cos(Ωτ)) , δD << 1. (5)

Due to complex trigonometric dependencies the circumferential integration over the positive pressure range
Ωp =

{
ϕ ∈ [0, 2π] : Π(ϕ) ≥ 0

}
is approximated by a Gauß-quadrature method. This yields tothe dimensionless

bearing forces
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γ2αiΠ(ϕi) cosϕi = fx ,

∫

Ωp

(γ2Πsinϕ)dϕ ≈

n∑

i=1

γ2αiΠ(ϕi) sinϕi = fy. (6)

Taking into account the symmetry of the whole problem the equilibrium point (X0, Y0) = (0, 0) can easily be
read out. In order to investigate its stability a linearization of (1) is carried out, resulting in a linear system with
time-dependent, periodic stiffness and damping matrices.
Literature (Dohnal (2007)) reveals that such a behaviour can lead to a stabilization effect. In order to examine
the stability of the equilibrium point in dependence of the rotational velocityω and the excitation parametersΩ
andδD of the bearing’s clearance Floquet’s theory is used, i.e. calculating the eigenvalues of the corresponding
Monodromy matrix.

4 Results

Determining the (in)stability regions by means of
a numerical evaluation of the Floquet multipli-
ers of the linearized system for different param-
eter sets leads to the following stability map (cf.
Figure 2).
The boundary line thereby represents the param-
eter combinations at which the equilibrium point
changes its stability property, i.e. there are two
Floquet multipliers with an exact magnitude of
one.
In the unstable region the equilibrium point is no
longer asymptotically stable such that the original
system tends to self-excited oscillations.
The stability properties can directly be assigned to
those of the original system (1) since the stable re-
gion stands out to be asymptotically stable.
By choosing appropriate harmonic excitations for
the bearing’s clearance the stable region can be
shifted to even higher angular velocities allowing
an operation of the system at higher rpm.

Figure 2: Stability map of the equilibrium point(X0, Y0) = (0, 0)
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