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Abstract: In the following a method for an active adjustment of the journal beagintgarance is presented. It is revealed
that the stability range of the equilibrium position of a rotor system can beaadtidoy an appropriate excitation and therefore
self-excited vibrations are suppressed, allowing a higher operatipmabf the whole system.
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1 Introduction

Hydrodynamic interactions within journal bearings cardl@munwanted oscillations due to instabilities caused
by non-linear effects. Depending on the bearing paramatetshe angular velocity of the rotor, stable and unsta-
ble parameter ranges can be identified. In order to extenstigge of stability various methods have been proposed
in literature. E.g. in the work of Chasalevris etlal. (2012p&able bearing shell geometry is investigated with a
passive geometry adjustment through an appropriate sgangper mechanism.

The present work deals with an actively controlled modifaabf the bearing clearance in order to stabilize a
vertically arranged rotor system operating at high rpm.

2 Rotor model

Assuming a perfectly balanced rotor of m&ss on a rigid shaft rotating with an angular velocity which is
supported by two adjustable two-lobe journal bearings. ilfleence of gravity should be neglected such that the
equations of motion expressed in the dimensionless timecording to[(B) read out to be:

e, : WX =Swf(X,Y,X"\Y) e,:w?Y =5Swf(X,Y,X"Y) (1)

X = (e/C)cosf andY = (e/C)sind denote the
dimensionless position of the COM of the rotor rela-
tive to the bearing’s center. The dimensionless forces
f= and f, represent the bearings’ support reactions
resulting from integration of the pressure distribution
(cf. @)). The paramete$ = uB3 Ry, /8mC? corre-
sponds to a reduced form of the Sommerfeld-number
with p describing the dynamic viscosity of the fluid,
B the bearing’s width,Ry, the shaft radiusR the
lobe radius and’ = R — Ry the mean bearing clear-

ance (cf[Figure]1).

Figure 1: Schematic geometry of the two-lobe bearing

3 Pressure Distribution

The governing equation for the pressure distribution withe bearing is given by the dimensionlesslRoLDS

equation
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with the height-functiord = 1 — Dsin — E cos(¢ — ) and the eccentricitie® = D, = d; /C for the upper

lobe andD = D, = —d,/C for the lower lobe respectively (df. Figurg 1).

The corresponding partial differential equation is givemidimensionless form according to
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with p representing the fluid pressure anthe axial coordinate of the bearing.

In order to simplify the PDE the short bearing theory is usesgumingy >> 1, the partial derivativéIl/9p can

be neglected. Integrating the simplified differential @gpraand averaging the resulting pressure function over the
axial coordinate& leads to the averaged circumferential pressure distabuti

- =1 ,pe(0,m) with 10 — —8E" cos(p — 0) + 4E(k — 20") sin(¢p — ) — 4D, cos ¢ — 8D, smgp
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(4)
In the following the eccentricity factor®; and D, are assumed to oscillate harmonically around a given mean
value D according to R
Dy =-Dy=D(1+pcos(Q7)), d0p << 1. (5)

Due to complex trigonometric dependencies the circumtezeimtegration over the positive pressure range
Q, = {<p € [0,2n] : TI(p) > 0} is approximated by a Gauf3-quadrature method. This yieltlsetdimensionless
bearing forces

/( M cos p)dy ~ Zvaﬂgp,)coupz fos /('y TIsin p)dyp =~ Z*y a;Il(p;) sing; = f,.  (6)

P i=1 Qp =1

Taking into account the symmetry of the whole problem theldxgjium point (X, Yy) = (0,0) can easily be
read out. In order to investigate its stability a lineaii@atof (T) is carried out, resulting in a linear system with
time-dependent, periodic stiffness and damping matrices.

Literature (Dohnal |(2007)) reveals that such a behavioarlead to a stabilization effect. In order to examine
the stability of the equilibrium point in dependence of téational velocityw and the excitation parametes
anddp of the bearing’s clearance Floquet's theory is used, i.&cutating the eigenvalues of the corresponding
Monodromy matrix.

4 Results

Determining the (in)stability regions by means of
a numerical evaluation of the Floquet multipli- S=1/s
ers of the linearized system for different param- 0p=0.1
eter sets leads to the following stability map (cf. 5[ b=01
[Figure 2).
The boundary line thereby represents the paran 4|
eter combinations at which the equilibrium point
changes its stability property, i.e. there are twc
Floquet multipliers with an exact magnitude of &
one.

In the unstable region the equilibrium pointis no  2f
longer asymptotically stable such that the origina
system tends to self-excited oscillations.

The stability properties can directly be assigned t
those of the original systerfll (1) since the stable re
gion stands out to be asymptotically stable. 0 5 : . : . :

By choosing appropriate harmonic excitations for ™ ) '

the bearing’s clearance the stable region can be

shifted to even higher angular velocities allowingFigure 2: Stability map of the equilibrium pointXo, Yo) = (0,0)
an operation of the system at higher rpm.
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