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Abstract: A simple elastic rotor model is coupled with a new physical and mathematical model of foil air bearings. The novelty
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1 Introduction

Air bearings offer a high potential for improving high speedrotating machinery. The major advantage is the
low friction loss, due to the low viscosity of the lubricating fluid. However, these bearings require either an external
pressure supply or high rotating speeds to build up a load carrying fluid film. Furthermore, aerodynamic bearings,
which refer to the latter mentioned kind, are prone to instabilities, Gross et al. (1980). A compliant bearing struc-
ture is supposed to suppress these vibrations, or at least minimize the amplitudes, Howard et al. (2001). Within
this contribution the effects of the bearing compliance, neglecting friction and damping, on the onset and resulting
rotor vibration are investigated.

A vast variety of foil air bearing models exist. In most casesthe bearing models are investigated for a fixed rotor
state. Surveys on the dynamics of the rotor, coupled to air bearing models are rather rare. Complex FE-models used
to be expensive in terms of computational costs. Consequently, these models are not appropriate for rotordynamic
investigations. Bonello and Phan use a classical linear elastic Winklerfoundation model for the compliant bearing
structure to investigate the dynamics of a rigid rotor, Bonello and Pham (2014). Bhore and Darpe use the same
structure model, but a linear elastic Lavalrotor, Bhore andDarpe (2013). Here, a new nonlinear physical and
mathematical model for the bearing structure is used and coupled with a Lavalrotor.

2 Model Description

Rotor Model An elastic Lavalrotor of massM with external dampingde is considered. In addition, the mass
of the shaft is modelled by discrete particles of massm
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located at each bearing, see Figure 1 (a). The shaft has a

stiffnessk and the configuration is symmetric so that the equations of motion are given by

[MẍW + deẋW + k(xW − xP )] ex + [MÿW + deẏW + k(yW − yP )] ey = Mg ex (1)

[mẍP + 2Fx − k(xW − xP )] ex + [mÿP + 2Fy − k(yW − yP )] ey = mg ex. (2)

ex, ey are the base vectors,xP , yP the Cartesian coordinates of the journal centerP within the bearing,xW , yW
the coordinates of the rotor’s centerW andFi = Fi(xP , yP , ẋP , ẏP , ω), i = x, y the bearing forces resulting from
the fluid pressure,ω being the speed of rotation.

Bearing Model Based on the conventional assumptions of lubricating fluid film theory, the unsteady Reynolds
equation for ideal gases is chosen to model the fluid behavior, in particular the fluid pressurep. The structure of
the foil is modeled such that the displacement does not depend on the axial coordinate (zf ) and the displacement
is not coupled in circumferential direction (xf ). This yields the following equation
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states the fluid boundary determined by the journal positionand the deformation of the

foil, h0 is the nominal clearance,p0 is the ambient pressure,p =
∫

L
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p dzf , is the axial - integrated pressure,L is

the bearing length andR the nominal bearing radius.α andb are parameters of the nonlinear foundation model.
Nondimensional Reduced Bearing-, Rotor - and Coupled Overall Model At first, to reduce the number

of model parameters, the overall model is transformed into nondimensional form, where a star(.)∗ denotes the



nondimensional variable. Furthermore, with the objectiveof a computational efficient bearing model a single
term axial shape functionp∗a = p∗a(z

∗

f )p̂
∗

a(τ, ϕ) + 1 is proposed. Based on the theory of weighted residuals, in
particular applying Kantorovich’s method, the dependencyon the axial coordinatez∗f is eliminated by evaluating
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f = 0, with the nonlinear differential operatorD defined in (3). The boundary condition is

chosen aŝp∗(ϕ = −π) = p̂∗(ϕ = π) = 0. Furthermore, substituting finite differences (FD) for theremaining
spatial derivatives w.r.t.ϕ in the fluid pressure and rearranging gives a nonlinear system of coupled ODEŝp∗

′

j =
f(p̂∗j−1, p̂

∗

j , p̂
∗

j+1), j = 1 . . . n, for n collocation points.
Introducing a state space vectorx containg both, the rotor states and the centerline pressureat each collocation

point p̂∗j , enables an overall formulation of the coupled fluid-bearing-rotor problem as an autonomous nonlinear
system of first order ODEs.
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3 Results

To analyze the system’s dynamical behavior a bifurcation analysis is conducted. The angular velocityω∗ is
used as a bifurcation parameter. Stationary solutionsx0 of (4) are determined by solving a system of algebraic
nonlinear equationsX(x0) = 0. Their stability is determined by the eigenvalues of the Jacobian. Periodic
solutions are investigated within MatCont.

Rigid Rotor For a rigid rotor (k → ∞), without external damping (de = 0) the stationary solutions for low
rotor speeds are stable. With increasing rotor speed a threshold ω∗

s,rgd can be identified, at which two conjugate
complex eigenvalues with vanishing real part, an Andronov-Hopf-Bifurcation, occurs. Forω∗ > ω∗

s,rgd the sta-
tionary solutions are unstable. Moreover, atω∗ = ω∗

s,rgd an unstable limit cycle is born. Following the unstable
branch a fold bifurcation is detected. Unstable limit cycles switch to stable limit cycles. Following the stable
branch again, a transition to unstable limit cycles can be observed. On the stable limit cycles the rotor whirls with
approximately the half angular velocity, periodT ≈ 4π

ω∗
.

Lavalrotor When considering the elasticity (k < ∞) for a rotor of the same mass, the journal loci coincide
with the journal loci of the rigid rotor. But the stability threshold of the Lavalrotorω∗

s,lvl does not coincide with the
stability threshold of the rigid rotorω∗

s,rgd. Both rotor stiffnessk and mass distribution(m,M, m+M = const.)
influence the critical rotor speedω∗

s,lvl and the amplitudes of the whirl motion forω∗ > ω∗

s,lvl. Figure 1 (b) shows
exemplarily a trajectory for a constant angular velocity. Further results will be shown within the presentation.
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Figure 1: Model of the symmetric Lavalrotor (a), example trajectory of P andW for ω∗ > ω∗

s,lvl (b)
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